
General announcements



We started by noticing that a force component acted along the line of a body’s 
motion will affect the magnitude of the body’s velocity.  We multiplied the force 
component and displacement to generate the scalar quantity called work.  

How We Got Here!

2.)

Using Newton’s Second, we derived a relationship between the net work
done on a body and the change of the body’s kinetic energy.  This was called the 
work/energy theorem.

We then noticed that there are forces whose work done does not depend upon 
the path taken as a body travels between two points—whose work is end-point 
independent (friction was clearly not one of these forces).  In such cases, we 
developed the idea of a function that, when evaluated at the endpoints, would 
allow us to determine how much work the field did as a body moved between the 
points . . . which is to say, we developed the idea of potential energy functions.

So now it’s time to take the last step, starting with the work/energy theorem.



Consider a body moving through a group of force fields on its way from Point 1 
to Point 2.  What does the work/energy theorem tell us about the body’s motion?

3.)

The net work done will equal the sum of all the bits of work done by the 
various pieces of force acting on the system.  Denoting each force with a letter, 
this can be written as:

                 Wnet                   =     ΔKE
WA + WB + WC + WD + WE = KE2 − KE1

Assume:
--the forces that produce work A and work B are conservative with KNOWN 
potential energy functions.
--the force that produces work C is conservative but with an UNKNOWN 
potential energy function.

--the forces that produce work D and work E are non-conservative, don’t 
HAVE potential energy functions and need to be determined using either        
or            .
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For work A and work B, we have potential energy functions.  So . . . 

4.)

WA = −ΔUA

      = − U2,A − U1,A( )
WB = −ΔUB

      = − U2,B − U1,B( )
and

For work C, D and E, we can’t use potential energy functions, either because 
we don’t know them or because they are non-conservative forces and don’t have 
them.  

With this, the work/energy theorem becomes:

 

          WA           +            WB           +   WC  +   WD  +   WE       = KE2 − KE1

− UA,2 − UA,1( )⎡⎣ ⎤⎦ + − UB,2 − UB,1( )⎡⎣ ⎤⎦ +
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− UA,2 − UA,1( )⎡⎣ ⎤⎦ + − UB,2 − UB,1( )⎡⎣ ⎤⎦ +              Wextraneous∑        = KE2 − KE1



Rewriting this so the signs are easy to see, we get . . . 

5.)

− UA,2 − UA,1( )⎡⎣ ⎤⎦ + − UB,2 − UB,1( )⎡⎣ ⎤⎦ + Wextraneous∑ = KE2 − KE1

  − UA,2 + UA,1           − UB,2 + UB,1  + Wextraneous∑ = KE2 − KE1

KE1 + U1,A + U1,B  + Wextraneous∑ = KE2 + U2,A + U2,B

What we are left with are a bunch of potential energy terms (U terms) 
and at least one kinetic energy term evaluated at time    , and a similar group of 
terms evaluated at time    .  If we put all of the terms associated with the state of 
the system at the beginning of the time interval, at point in time 1, on the left side 
of the equal sign, and put all of the terms associated with the state of the system at 
the end of the time interval, at point in time 2, on the right side of the equal sign 
(leaving the extraneous work terms alone), we get:

t1
t2



Rewriting this in it’s most succinct form, allowing for the possibility 
that you could have more than one object with kinetic energy in a system at a 
given instant (think Atwood Machine), we get:

If we call the sum of all the kinetic energies and all of the potential energies 
at a point in time the mechanical energy E at that time, we can make this 
relationship even more abbreviated as: 

KE1∑ + U1∑  + Wextraneous∑ = KE2∑ + U2∑

E1 + Wextraneous∑ = E2

This is the absolute simplest form of this relationship.

6.)



   E1 + Wextraneous∑ =            E2

KE1∑ + U1∑( )  = KE2∑ + U2∑( )

In summary, this relationship states that if there is no work being done by 
extraneous forces in a system (remember, a force that does extraneous work is one 
whose work calculation can’t be done using a potential energy function), then the 
total mechanical energy at time 1 will equal the total mechanical energy at time 2.  
In other words, the total mechanical energy does not change, is conserved and 

Note 1: At time 1, the distribution of potential and kinetic energies may be 
different than at time 2.  The claim is that the SUM of those two types of energy 
will always be equal.

Note 2:  How to conceptually understand this? If there is extraneous work being 
done, that will simply increase or decrease the initial mechanical energy in the 
system giving us the final mechanical energy in the system.

7.)

0



Conservation of Energy!
What this relationship says is that if there is no work being done by 
extraneous forces in a system (remember, an force that does extraneous 
work is one whose work calculation can’t be done using a potential energy 
function), then the total mechanical energy at time 1 will equal the total 
mechanical energy at time 2.  In other words, the total mechanical energy 
does not change and is “conserved.” 

Note 1: At time 1, the distribution of potential and kinetic energies may be different than at time 
2.  The claim is that the sum of those two types of energy will always equal the same number.

Note 2: If there is extraneous work being done, that will simply increase or decrease the initial 
mechanical energy in the system to give us the “final” mechanical energy in the system.



Block on Table

d
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A block       has been forced to move to the 
left on a tabletop.  It is attached to a string 
that runs over a frictionless, massless pulley.  
The other end of the string is attached to a 
hanging mass      .  If the coefficient of 
friction between the block and the tabletop 
is              , and if the initial velocity is 2 m/s 

m2

m1

µk = .35

This is straight conservation of energy, so we start with bailiwicks:

KE1∑ + U1∑ + Wext∑ = KE2∑ + U2∑

with the block being twice as massive as the hanging mass, how far 
will the block travel (d) before coming to rest?
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The frictional force is               , where in 
this case the normal is clearly equal to the 
weight of the block, or        .  Also, the angle 
between the frictional force and the 
displacement will be        .

m2g

180o

fk = µkN

So we start:

           KE1∑              + U1∑    +  Wext∑         = KE2∑ + U2∑
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Block on Tilted Table
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How would this problem change if       was on an incline of angle    , 
friction was removed and both bodies started from rest?

m2 θ

Again, this is straight conservation of energy, so we start with bailiwicks:

KE1∑ + U1∑ + Wext∑ = KE2∑ + U2∑

We’ll assume the block accelerates down the incline. So what’s its 
velocity once it has traveled a distance d units down the incline?

In that case, you’d have to assume a direction of 
acceleration (you don’t know if the angle is 
enough to make       accelerate up or down the 
incline), and once assumed you’d have to set a 
zero-point for your potential energy function for 
the block.  
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y1,initial = 0

m2

m1

θ

y1,final = dy2,final = 0

y2,initial = dsinθ
dsinθd

θ

Getting the potential-energy zero-levels for the two bodies is a little tricky.  I 
always set the zero-level to be the lowest the body gets during the motion.  

For the hanging mass, it’s easy.  It starts at its lowest points, so that’s where 
I’d put its zero-point.

For the block, a little trig is required to determine how far it physically drops in 
the vertical. The sketch shows this calculation and the “lowest point” zero point.



KE1∑ +      U1∑       +  Wext∑ =        KE2∑           +  U2∑
   0      +  m2g dsinθ( )+      0      = 1
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In any case, with the zero’s set, we can start with the standard for

KE1∑ + U1∑ + Wext∑ = KE2∑ + U2∑
and just fill in the bailiwicks:



Pendulum
A pendulum bob of mass m = 3 kg is attached to a rope of length L = 0.8 meters 
that is, itself, attached to the ceiling.  Assuming the bob starts from rest at angle 𝝷.  
The bob swings down through the bottom of the arc and out again.  What is the 
tension in the rope as the bob swings through the bottom of the arc? 

L
θ



This is where energy 
comes in.  And to do that, we need to know how 
far the bob “drops” to get to the bottom . . .  
Looking at the geometry to the right, we get: 

L

This is a bit tricky.  As the bob is passing through 
the bottom of the arc, gravity and tension will both 
be in the vertical, and they will have to 
accommodate centripetal acceleration.  The f.b.d. 
looks like

T − mg = macent

           = m v2

L
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   ⇒    T = mg + m v2

L

To get this, we need “v.” 
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and N.S.L. becomes:



And the tension becomes: 

L

So to get the velocity, energy suggests:
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KE1∑ +        U1        +∑ Wext∑ = KE2∑ + U2∑
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              ⇒        v2 = 2g L − Lcosθ( )
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 = mg + 2mg(1− cosθ)
 = 3mg − 2mgcosθ



Problem 5.25
• A daredevil on a motorcycle leaves a ramp with speed 35.0 

m/s. If the speed is 33.0 m/s at the peak of motion, what is the 
maximum height the motorcycle reaches (relative to the end of 
the ramp)? Ignore friction and air resistance in this problem.

See solution on class Website


